Security in Vehicle Networks

Armin Happel, Christof Ebert
Stuttgart, 17. March 2015
Vector Consulting Services

- ... supports clients worldwide in improving their product development and IT and with interim management
- ... with clients such as Accenture, Audi, BMW, Bosch, Daimler, Huawei, Hyundai, Lufthansa, Munich RE, Porsche, Siemens, Thales, ZF
- ... offers with the Vector Group a portfolio of tools, software components and services
- ... is globally present as a group with over 1300 employees and well over 250 Mio. €

- www.vector.com/consulting
- www.vector.com/PREEvision
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Security analysis</td>
</tr>
<tr>
<td>3.</td>
<td>Software update and maintenance</td>
</tr>
<tr>
<td>4.</td>
<td>Security key management</td>
</tr>
<tr>
<td>5.</td>
<td>Network Strategies</td>
</tr>
</tbody>
</table>
Introduction

Connected Cars - Today

- Cars contain high data connectivity
- Data access is shielded within the body of the car
Introduction

Connected Cars - Tomorrow

- Multiple communication paths with access to vital functionality

- Distributed onboard communication across ECUs and sensor fusion

- ISO 15118 – Vehicle to grid communication

- BlackBox (data collector) for insurance, etc.

- Off-Board Tester

- Tire pressure monitoring via near field communication.

- 802.11p WLAN

- eCall 112

- ITS Roadside Station

- OEM Backbone

- Passengers internet (Google, E-Mail, ..)

- Car Information (weather, traffic, map, ..)
Complexity and Related Competence Gap Drive Security Risks

Introduction

- Increasing complexity of E/E driven functionality
- Rising safety requirements and liability risks
- Inefficient engineering processes
- Lack of safety / security competence

System Complexity

- Electronic fuel injection
- Cruise control
- Gearbox control
- Traction control
- Anti lock brakes
- Electronic stability control
- Active body control
- Adaptive gearbox control
- Adaptive cruise control
- Emergency call
- Gearbox control
- Traction control
- Anti lock brakes
- Electronic fuel injection
- Cruise control
- Adaptive Headlights
- Steer by wire
- Lane Assistant
- Stop and Go
- Parking Distance Control
- Emergency Break Assist
- Curve-Warning
- Hybrid Drive
- Road Trains
- Electronic Brake Control
- Telediagnostics
- Car-2-car Communication
- Online Software Updates
- Airbags
- Electronic stability control
- Active body control
- Adaptive gearbox control
- Adaptive cruise control
- Emergency call
- Gearbox control
- Traction control
- Anti lock brakes
- Electronic fuel injection
- Cruise control

© Vector
Introduction

Security projects for car2x

- Standardization across OEMs and countries needed!
- Projects for Car-2-x
 - C2C-CC and ETSI TC ITS WG
- Defined a reference architecture
 - Communication participants
 - Hardware and software requirements
- Determined relevant use cases
 - Scenarios for communication
 - Define involved participants
- Identified threats and risks.
 - Software is never perfect.
 - Remote access provides attack surface.
- Derive hardware and protocol requirements

Source: ETSI Security Workshop
Agenda

1. Introduction
2. Security analysis
3. Software update and maintenance
4. Security key management
5. Network Strategies
Security analysis

Car hacking analysis

- Physical access to the device
 - Details about the internal hardware
 - Eavesdropping of internal communication
 - Code and data could be extracted.
 - Disassembling the executable code.

- Weakness in the protocols
 - Usage of outdated and insecure crypto algorithm (DES)
 - Replay attacks possible
 - Partly unencrypted communication between ECU and backend.
 - Alert protocol provides failure information (?).

- Weakness in key management and storage.
 - Same key is used for all ECUs!
 - Keys are not stored in a secure memory area.

- No authentication and integrity check for transferred files.
- (No need for advanced hacking line timing analysis or side channel attacks)
Security analysis

Example: Door unlock

- **Assets**
 - Data along the communication path:
 - Off-board communication between backend and connectivity.
 - On-board communication between connectivity and BCM.
 - Communication between BCM and modules.
 - Security keys of the devices.

- **Threats:**
 - Device manipulation.
 - Compromising keys.
 - Man-in-the-middle.
 - Gaining access control.
 - Denial of services

- **Impacts:**
 - Safety functions.
 - Financial loss.
 - Manufacturer reputation
 - System malfunction
 - Privacy information disclosure
Systematic security analysis approach

Threat analysis
- Attack potentials (STRIDE) based on attacker skill, time
- Automotive common criteria

Network and system layout
- Specify use cases
- Identify communication path and data storage

Risk assessment
- on functional level (ECU)
- on system level (vehicle)

Security level
- Define security level for the asset
- Derive security requirements and test methods.

→ Vector Security Check relates specific automotive risks
→ Ensure cost/benefit balance by prioritized security/threat targets
Security Directly Impacts Safety

Functional Safety (ISO 26262)
- Hazard and risk analysis
- Functions and risk mitigation
- Safety engineering

Security demands implicitly addressed

+ Security
- Security threats
- Misuse cases and mitigation
- Security engineering

For better efficiency and clear focus security engineering should be embedded to safety framework from hazards to after-sales updates
Towards Automotive Common Criteria

- **Goal**
 Consistent security evaluation and certification of products and protection profiles

- **Applicability**
 Operating systems, key management systems, ICs, smart cards, crypto libraries, ...
 Common criteria have been adopted for different critical systems, such as automation, aerospace, defense,

- **Approach**
 ISO 15408: 7 Evaluation Assurance Levels (EAL) for security requirements
 ISO 27001: techniques for security engineering

- **Automotive experiences**
 - Many automotive players so far have unclear security targets and thus no consistent consideration in architecture and life-cycle processes
 - Unnecessary high risk and cost due to overdoing in one area – and failing on others

Tailored protection profile combined with systematic safety/security engineering provide a thorough yet cost-effective solution.
1. Introduction

2. Security analysis

3. Software update and maintenance

4. Security key management

5. Network Strategies
New security need: Quick and secure software updates

| Quick | Over the air Flashing (SOTA)
| Cooperation of car owner necessary |
| Secure | Security keys and certificates
| Secure flashing protocols (e.g. HIS)
| Authorized access |
| Software Updates | Cooperation of tier1 and OEM
| OEM maintenance backend required |
| Resulting Security Requirements | Foresee SOTA from the begin of ECU development
| Procedures and responsibilities to be set before SOP
| Balance features vs. logistic infrastructure |
| Business opportunities | New markets like cloud-services, function enabling, secure internet access or software-as-a-product |
Software update and maintenance

Software update over the air (SOTA)

- Car has the Root certificate and the platform certificate with the public keys.
- Backbone legitimate to the car with its certificate, signed by the OEM CA.
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Security analysis</td>
</tr>
<tr>
<td>3.</td>
<td>Software update and maintenance</td>
</tr>
<tr>
<td>4.</td>
<td>Security key management</td>
</tr>
<tr>
<td>5.</td>
<td>Network Strategies</td>
</tr>
</tbody>
</table>
Security key management

Key management along ECU lifecycle

<table>
<thead>
<tr>
<th></th>
<th>few</th>
<th>many</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>simple</td>
<td>complex</td>
</tr>
<tr>
<td>Risk</td>
<td>high</td>
<td>low</td>
</tr>
</tbody>
</table>

![Diagram showing key management along ECU lifecycle](image)
Key management lifecycle

- Development phase
- Failure analysis

- Production phase
- In-field / After-sales

Development keys

- Development
- Analysis tools
- ECU defect analysis

TIER-1 production

Stock (virgin ECUs)

Initial keys

OEM Key database

Vehicle production

Repair shop

Vehicle operation

Authorized and non-authorized repair shops

Re-keying

Production keys

TIER-1 Stock (Used ECUs)

(used)

Production keys

(unused)
Agenda

1.	Introduction
2.	Security analysis
3.	Software update and maintenance
4.	Security key management
5.	Network Strategies
Network Strategies

- Learn from IT Business Know-how
 - Adoption of methods, such as automotive common criteria
 - Governance criteria for security engineering along the life-cycle

- Computers are grouped to separate networks
 - depending on their use case and traffic
 - Depending on the security level of their data assets
 - The access to computers is restricted by the structure of the network.

- Security components like firewall and router to separate networks.
 - A router passes only the relevant and allowed data from one network to the other.
 - A firewall integrated into a router controls the access to the internet.

- Security maintenance can be restricted to updates of the central routers
Network Strategies

Example: Door unlock

- **Network strategy:**
 - **A, B:** No security zone
 - Untrusted communication
 - Using certificates and asymmetric cryptography
 - **C:** Low security zone
 - Authentication with symmetric keys
 - Confidentiality can be considered.
 - Key storage important
 - **D:** Medium security zone
 - Encapsulated communication area
 - Authentication with symmetric keys
Conclusion

Outlook: Security will ramp up fast

Security Engineering
- Systematic security engineering activities from requirements onwards
- Automotive security common criteria building upon from ISO 15408 etc.
- Security policies and governance
- Thorough training of engineers

Network strategies
- Automatic data distribution and usage analysis in the network
- Consistent network structure according to security requirements
- Encapsulate nodes and networks with remote access
- Firewalls and secure communication bottom up from ECU and base software

Software update and maintenance
- More thorough and systematic Firewall and protection concepts
- Secure over-the-air (OTA) updates for vulnerabilities with secure cloud services for function upgrades
- Consistent intrusion detection and reporting, with fast counter measures

Security key management
- End-to-end secure key management over the life cycle of the vehicle
- Enhanced encryption schemes
- Long term availability of a secured access and provisioning
- ECU lifecycle protection, e.g., for SW upgrades and HW changes
For more information about Vector and our products please visit

www.vector.com/security

Authors:
Armin Happel, Prof. Dr. Christof Ebert
Vector Consulting Services GmbH