Estimation Tools and Techniques

Luigi Bugliione and Christof Ebert

Estimating size or resources is one of the most important topics in software engineering and IT. You won’t deliver according to expectations if you don’t plan, and you can’t plan if you don’t know the underlying dependencies and estimates. This column is an overview of estimations. It covers estimation methods and provides an overview and evaluation of popular estimation tools.—Christof Ebert

An estimate is a quantitative assessment of a future endeavor’s likely cost or outcome. People typically use it to forecast a project’s cost, size, resources, effort, or duration. Today’s software market, with its increasing reliance on external components and adapted code, has led to new kinds of technologies for estimation, a practice that has moved from mere size-based approximations to functional and component estimates. Standards are starting to evolve as well, because these estimates play such a crucial role in business and enormous amounts of money are at stake.

Unfortunately, people often confuse estimates with goals or plans. For instance, they schedule projects according to needs instead of feasibility, or commit to something “very urgent and important” before checking how this “urgency” relates to current commitments and capacity planning. In fact, most failures in software projects come from belatedly understanding and considering the important difference between goals, estimates, and plans. Figure 1 shows how they are related.1,2

Two of the most important ingredients for proper estimation are people and historical data. They’re interrelated more than you might expect because most organizations lack historical data, thus they form estimates primarily through analogy and experience. It works if you have experienced people who periodically measure and put their estimates versus actual data into a historical database. Tools can help reducing the time and costs involved in data gathering, as well as supporting reports, risk management, and scenario analysis.

Estimation Technologies

Four types of estimation techniques are regularly used today in industry practice—namely, expert judgment, analogy, decomposition, and statistical (or parametric) methods. For their origins, we recommend both the overview literature1,2 and the specific detailed work.3–7

Expert judgment is based on the brainstorming of one or more experts who have experience with similar projects; a consensus mechanism then produces the estimate. Analogy estimation is based on comparing previous, similar activities, analyzing the most relevant project and service attributes, and trying to figure out the new project’s effort and cost values through estimator experience. As with expert judgment, this
Software technology

A technique requires skilled people who can properly understand and see relationships and implicitly evaluate qualitative and quantitative figures to determine possible clusters of projects. Decomposition is a top-down estimation technique that tries to make a granular list of initially planned tasks. The more granular the tasks associated with a certain requirement in a work breakdown structure (WBS), the closer the planned effort is with its final value, thereby reducing the mean relative error and possible slippage in project deliverables. Statistical (parametric) models are a set of related mathematical equations in which you define alternative scenarios by changing the assumed values of a set of fixed coefficients (parameters). Software project managers use such models or parametric estimation tool to estimate a project’s duration, staffing, and cost.

Estimation Tools

Most estimation tools are proprietary due to the huge effort to consolidate underlying history databases. This explains the lack of mainstream open source software (OSS) estimation tools. Therefore, we look only at commercial off-the-shelf tools and technologies.

Most tools here overlap in their underlying functionality, so the rest of this discussion doesn’t indicate bias for a specific vendor. A very important requirement to analyze in an estimation tool is to have the opportunity to run benchmarks against best-in-class projects and browse within such data. That’s why all major tools have recently included the International Software Benchmarking Standards Group (ISBSG) history database (www.isbsg.org), one of the most renowned public sources of information that’s continuously maintained and updated. Table 1 summarizes a collection of estimation tools.

All these tools deal with lines of code; when affirming to count function points (FPs), often they simply do a backfiring (see www.computer.org/portal/web/csdl/doi/10.1109/2.471193 according to a conversion table or by manually inserting the basic information for calculating FPs. In the first case, it’s fundamental to control the LOC definition spread and apply it consistently across the organization and project groups, to avoid the risk of having incomparable data and inserting mistakes in your decision-making process. Another negative side effect of the backfiring practice: recent studies demonstrate the advantages of using FP-based regression models using two or more base functional components (BFCs), while the backfiring process returns only the whole number of FPs, with no splits. The precondition for having a successful estimation using FSM methods such as FPA besides on the proper storage of the single BFC values: a simple percentage distribution based on data originally counted with an FSM method shouldn’t be necessarily valid or particularly precise, reducing the reliability of such a project repository. In the second case (manually inserting FSM counts), the tool
wouldn’t cut time and costs to functional analysts but would represent simply a project database.

Hints for Practitioners
Estimation implementation in a large organization might take two years. Gaining estimation experience and integrating it into project management processes plus the consequent introduction of IT measurements for continuing improvement might require another two years.

Implementation costs are often cited as an argument against systematic and professional estimation. But considering the effort involved, you can easily predict that just one failed IT project will cost more than all the effort required to implement and support sound methods for estimation and software measurement. Here’s a suggested “to do” list for making your case and improving your estimates:

- Data is the resource, information brings the value. The first step is to determine your own informative goal and establish the proper process to gather, verify, and validate data before their storage in historical databases. The second step is the analysis, bringing valuable information for the decision-making process.
- Collect your own data on a regular basis and at the right level of granularity. Estimation models based on multiple regression analysis are more effective than using a single independent variable. Thus, it’s better to use multiple BFCs from

<table>
<thead>
<tr>
<th>Tools</th>
<th>Producer</th>
<th>LOC/FP based</th>
<th>Single (S)/ multi (M) modes</th>
<th>Online</th>
<th>Proprietary</th>
<th># projects</th>
<th>ISBSG IT data</th>
<th>Complexity (High/Medium/Low)</th>
<th>Size (S/M) estimation (E)</th>
<th>Price range (single license)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCOMO family (http://csse.usc.edu/tools/COCOMOSuite.php)</td>
<td>USC</td>
<td>LOC</td>
<td>S</td>
<td>Y</td>
<td>N</td>
<td>n/a</td>
<td>N</td>
<td>L</td>
<td>E</td>
<td>Free</td>
</tr>
<tr>
<td>Comparative Estimating Tool</td>
<td>ISBSG</td>
<td>FP</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>5,000+</td>
<td>Y</td>
<td>L</td>
<td>E</td>
<td>Low</td>
</tr>
<tr>
<td>CostXpert (www.costxpert.eu)</td>
<td>CostXpert Group</td>
<td>LOC</td>
<td>M</td>
<td>N</td>
<td>Y</td>
<td>n/a</td>
<td>N</td>
<td>H</td>
<td>S+E</td>
<td>Mid</td>
</tr>
<tr>
<td>Early Estimate Checker</td>
<td>ISBSG</td>
<td>FP</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>5,000+</td>
<td>Y</td>
<td>L</td>
<td>E</td>
<td>Mid</td>
</tr>
<tr>
<td>Function Point Workbench</td>
<td>Charismatek</td>
<td>FP</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>n/a</td>
<td>N</td>
<td>M</td>
<td>S+E</td>
<td>Low</td>
</tr>
<tr>
<td>FP Outline (www.totalmetrics.com)</td>
<td>Total Metrics</td>
<td>FP</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>2,000+</td>
<td>N</td>
<td>L</td>
<td>E</td>
<td>Mid</td>
</tr>
<tr>
<td>KnowledgePlan (www.spr.com/spr-knowledgeplanr.html)</td>
<td>SPR</td>
<td>FP</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>14,000+</td>
<td>U</td>
<td>M</td>
<td>S+E</td>
<td>Mid</td>
</tr>
<tr>
<td>PQM Plus (http://www.qpmg.com)</td>
<td>Q/P Management Group</td>
<td>FP</td>
<td>M</td>
<td>N</td>
<td>Y</td>
<td>n/a</td>
<td>N</td>
<td>M</td>
<td>S+E</td>
<td>Mid</td>
</tr>
<tr>
<td>Reality Checker (www.isbsg.org)</td>
<td>ISBSG</td>
<td>FP</td>
<td>S</td>
<td>Y</td>
<td>Y</td>
<td>5,000+</td>
<td>Y</td>
<td>L</td>
<td>E</td>
<td>Mid</td>
</tr>
<tr>
<td>SEER-SEM (www.galorath.com)</td>
<td>Galorath</td>
<td>LOC</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>n/a</td>
<td>Y</td>
<td>H</td>
<td>S+E</td>
<td>Mid</td>
</tr>
<tr>
<td>SLIM (www.qsm.com/tools/index.html)</td>
<td>QMS</td>
<td>LOC</td>
<td>M</td>
<td>N</td>
<td>Y</td>
<td>8,000+</td>
<td>Y</td>
<td>H</td>
<td>S+E</td>
<td>High</td>
</tr>
<tr>
<td>SMRe (http://www.qpmg.com)</td>
<td>Q/P Management Group</td>
<td>FP</td>
<td>M</td>
<td>N</td>
<td>Y</td>
<td>n/a</td>
<td>N</td>
<td>M</td>
<td>E</td>
<td>Mid</td>
</tr>
</tbody>
</table>
FP-based projects than the final FP value related to the project work effort.

- Reporting isn’t a second-level process—the decision-making process comes from information, not from single data. Report presentation can dramatically change the way the original data would suggest to take a certain action.

- Estimation should be viewed as cause-effect logic. What is forecast for a certain phenomenon will affect other processes. Without clarifying the series of links, the risk is to over- or underestimate more than expected.

- Target an estimation accuracy in line with business needs. Many of our clients improved their preciseness toward 10 to 20 percent, which in most cases is sufficient.

- Use estimation tools to grow. If not properly applied, parametric models could implicitly reduce an organization’s willingness to grow and mature.

The ultimate tip is to avoid becoming complacent with formulas for your own productivity and cost drivers. Challenge them and improve your efficiency each year with focused improvements.

From our own experience, estimation and measurement is insufficiently used across companies. Later, when projects are facing problems, it’s too late to restart a proper estimation. We thus recommend starting off on the right foot with the next project and introducing or improving your estimation with a closed loop of estimation, planning, measuring, and periodically improving your estimates. That said, you can and should immediately strive to improve your data quality, estimation precision, and, of course, your efficiency. In the famous words of E. Deming, “In God we trust. All others bring data.”

References

LUIGI BUGLIONE is a process improvement and measurement specialist at Engineering.IT SpA, Italy, and associate professor at the École de Technologie Supérieure (ETS) in Montréal. Contact him at luigi.buglione@eng.it

CHRISTOF EBERT is managing director at Vector Consulting Services and member of IEEE Software editorial board. Contact him at christof.ebert@vector.com.