AUTOSAR Security Modules

Current Status
Agenda

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AUTOSAR</td>
</tr>
<tr>
<td>2.</td>
<td>CAL & CSM</td>
</tr>
<tr>
<td>3.</td>
<td>SecOC</td>
</tr>
</tbody>
</table>
Introduction

- **Automotive Open System Architecture**
 - Software for electronic control units (ECU)

Software architecture
Introduction

Software component (SWC) / Application
- Implementation of functionality of ECU
- Runs on microcontroller
- Sends & receives data to and from other ECUs (in network)
Introduction

Run time environment (**RTE**)
- Provides interface to basic software (**BSW**)
System services (**SYS**) and libraries (**LIB**)
- Cryptographic modules

Operating system (**OS**)
Complex device drivers (**CDD**)
Introduction

Communication modules (COM)
- send & receive data on automotive bus systems
 - Controller Area Network (CAN)
 - Local Interconnect Network (LIN)
 - FlexRay
 - Ethernet
 - ...

![Diagram of SWC/Application, RTE, SYS, COM, LIB, CDD, Microcontroller]
Introduction

Microcontroller abstraction layer (**MCAL**)

- BSW & SWC independent of microcontroller
Motivation for security modules in AUTOSAR

New security challenges
- Automotive software plays central role in car innovations
- Car connectivity will provide an essential part for value-added features

Car security – strict and secure access control to...
- ... the car and its parts (ECU)
- ... sensitive car data (odometer, motor characteristic)
- ... passenger’s data (GPS)
- ... intellectual property of the OEM
AUTOSAR security modules

CAL & CSM
- Basic cryptographic primitives for BSW and application

SecOC
- Authenticated communication seamlessly integrated into the AUTOSAR communication stack
1. AUTOSAR

2. CAL & CSM

3. SecOC
Introduction

Crypto Abstraction Library – CAL
- BSW, CDD or SWC use CAL by inclusion
- Memory allocated by caller
 - Enables re-entrance

Crypto Primitive Library – CPL
- SW implementation of cryptographic primitives

Crypto Service Manager – CSM
- SWC use CSM through RTE
- BSW/CDD use CSM by inclusion
- Asynchronous operation possible
 - Callback indicates application

Crypto library module – CRY
- Implementation of cryptographic primitives
 - Usage of SW or crypto HW possible
Abstract definition of cryptographic services
- No definition for a concrete cryptographic algorithm

Supported Cryptographic Services

<table>
<thead>
<tr>
<th>Basic Cryptography</th>
<th>Key Management</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hash</td>
<td>- Key derivation function (KDF)</td>
<td>- Compression/ Decompression</td>
</tr>
<tr>
<td>- Message authentication code (MAC)</td>
<td>- Key generation, update*, export, import</td>
<td>- Checksum</td>
</tr>
<tr>
<td></td>
<td>- Generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Random number generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Encryption/ Decryption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Symmetric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Asymmetric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Signatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Key exchange protocols</td>
<td></td>
</tr>
</tbody>
</table>

*Csm only
Individual configuration of each required service
- Set of distinct configurations
- Specific implementation for each service configuration
Cryptographic Service Configuration

- AsymEncryptService
 - AsymEncrypt_1
 - RSA2048
 - AsymEncrypt_2
 - RSA4096

- SymEncryptService
 - SymEncrypt_1
 - AES
 - SymEncrypt_2
 - Serpent

- HashService

- Individual configuration of each required service
- Set of distinct configurations
- Specific implementation for each service configuration
- Implementations may change in future
Cryptographic Service Configuration

- AsymEncryptService
 - AsymEncrypt_1
 - ECC256
 - AsymEncrypt_2
 - ECC512

- SymEncryptService
 - SymEncrypt_1
 - AES
 - SymEncrypt_2
 - Serpent

- HashService

- Individual configuration of each required service
- Set of distinct configurations
- Specific implementation for each service configuration
- Implementations may change in future
- API compatibility not ensured
CAL & CSM

General Usage

Streaming services

- Indefinite long data stream

 - Start
 - Update
 - Update
 - ...
 - Update
 - Finish

- Initialization with Start function (e.g. Csm_SymEncryptStart)
- Update function (e.g. Csm_SymEncryptUpdate)
- Finish function (e.g. Csm_SymEncryptFinish)

Non-streaming services

- Example: Csm_GenerateRandom
Hardware-based Security

- CSM services use cryptographic hardware or software implementation
Secure Hardware Extension (SHE)

- On-chip extension to microcontroller
- Memory for secure storage of (cryptographic) data
- Hardware extension for cryptographic primitives
- Specified by Hersteller Initiative Software (HIS)
SHE - Performance

- AES ECB Encryption: SHE vs. Software library

Measured on a Freescale MPC5646C (w/ CSE), MICROSAR Stack with CSM and SHE driver with the Vector 'AUTOSAR Measurement and Debugging (AMD) Runtime Measurement (Rtm)' Tool.

1 Block = 16 bytes
Agenda

1. AUTOSAR
2. CAL & CSM
3. SecOC
SecOC

Introduction

- SecOC is parallel to PDUR
 - PDUR routes PDUs
 - PDU is a message on a bus
SecOC

Introduction

- SecOC is parallel to PDUR
- PDUs are routed through SecOC
- PDU & authentication sent & received through IF or TP modules
 - COM module combines data into PDUs
 - IF modules send & receive atomic messages
 - TP modules manage messages longer than atomic messages
SecOC

Introduction

- SecOC is parallel to PDUR
- PDUs are routed through SecOC
- PDU & authentication sent & received through IF or TP modules
- SecOC uses Cal or Csm
- RTE-interface
- Authentication: MAC or signature
SecOC sends & receives secured PDUs
- Secured PDUs are protected against
 - Manipulation
 - Random errors
 - Replays
Sending a secured PDU

- DataID assigned to secured PDU
- Authentic PDU
Sending a secured PDU

- Freshness value
 - Monotonic counter to prevent replay attacks
- Implementation
 - Timestamp
 - Counter

SecOC

ECU 1

DataID 1
PDU 1
Fresh. Value

Secured PDU
Sending a secured PDU

- DataID, PDU, freshness value form input to MAC generator
- Symmetric key required for MAC generation
- SecOC may use CMAC to benefit from SHE
Sending a secured PDU

- PDU, truncated freshness value, truncated MAC form secured PDU
Sending a secured PDU

- NIST Special Publication 800-38B (CMAC)
 - Truncated MAC length \(\geq 64 \) bits

Truncated MAC length must be thoroughly chosen dependent on network attributes and security requirements
Reception of a secured PDU

- Authentic PDU is parsed
- DataID must be identical for sender and receiver
- Truncated freshness value is synchronized to form verification freshness value
Reception of a secured PDU

- Verification freshness value > stored freshness value (replay attacks)
 - If not: Increment MSBs of verification freshness value
- Synchronization between sender and receiver

```
Ver. Fresh. + 0..01 0..0 = Ver. Fresh.
```
Reception of a secured PDU

- DataID, PDU, verification freshness form input to MAC generator
- Symmetric key must be identical for sender and receiver
- MSBs of calculated MAC are compared to truncated MAC
 - If successful, PDU is forwarded
 - If not, PDU is dropped
System Configuration

ECU 1
- PDU 1
- PDU 2
- PDU 3

ECU 2
- PDU 1
- PDU 2

ECU 3
- PDU 1
- PDU 3

BUS
Assignment of DataIDs to the to-be-secured PDUs
System Configuration

- Specification of the layout of the secured PDU
Assignment of keys to the secured PDUs
- Initial keying
- Re-keying
System configuration

ECU 1
- DataID 1
 - PDU 1
 - Fresh. Value
 - MAC
 - DataID 2
 - PDU 2
 - Fresh. Value
 - MAC
- PDU 3

ECU 2
- DataID 1
 - PDU 1
 - Fresh. Value
 - MAC
- DataID 2
 - PDU 2
 - Fresh. Value
 - MAC

ECU 3
- DataID 1
 - PDU 1
 - Fresh. Value
 - MAC
- PDU 3

ECU1_Extract
ECU2_Extract
ECU3_Extract
For more information about Vector and our products please visit

www.vector.com

Author:
Philipp Werner, Armin Happel, Ralf Fritz, Steffen Keul
Vector Informatik GmbH