The required “unlimited compatibility” of components on the ISOBUS cannot be attained by performing conformity tests at the end of device development alone. Rather, sound and continual tests over the entire development phase are necessary. Efficient use of such tests can only be achieved by using tools with domain knowledge that cover a large number of tasks ranging from simulation to analysis tests as well as conformity tests. Developers of implements and tractors need a tool that covers conformity testing, cycles through the tests independently, yet offer the freedom to only test certain sections and can be extended to test the application.

In the agricultural machinery field, the information age has long taken hold, and system thinking has replaced insular solutions. As a result, a uniform data interface for interconnecting the tractor, implements and on-board computer has become indispensable in agricultural equipment. In this context, the internationally coordinated bus system ISOBUS was developed and introduced for the first time at the 2001 Agritechnica fair. ISOBUS standardizes data communication between tractor, implements and farm management computers and enables system-wide data exchange. The ISO11783 series of standards consists of 14 sub-standards; they each address different aspects of the technology, ranging from System Description (Part 1), Physical Layer (Part 2), Data Link Layer (Part 3), Network Layer (Part 4) and Virtual Terminal (Part 6), Diagnostics (Part 12) and File Server (Part 13).

“One person’s pleasure is another’s pain” is common folk wisdom. The situation is similar with the requirement for unlimited compatibility (system and manufacturer independent) of ISO11783-compatible products [1]. For the customer this is not only very easy to handle, it also opens up the possibility of purchasing flexibility and independence from the manufacturer. That in itself is a large motivational factor in procuring such machinery. For manufacturers, however, this promise represents a great challenge in terms of development, operation and maintenance of the machines.

CANoe.ISO11783 from Vector offers a universal development and testing solution here. Option ISO11783 for the CANoe tool provides the necessary domain knowledge and supports conformity to the ISO11783 standard (Figure 1).

Experience over the past two years in the ISOBUS field has shown that despite a sharply rising number of devices certified by conformity tests [2], different components, such as the Task Controller and implement, do not always harmonize in their interaction without problems. There is the potential for surprises in operation of an implement when the Virtual Terminal is used too. As well as for service technicians, in such a heterogeneous environment as the ISOBUS it is difficult to definitively localize the cause of a problem and correct it if necessary. Frequently, the technician is
confronted with unfamiliar devices or combinations of devices. In view of these problems, and to assure customer satisfaction, the manufacturer’s initiative AEF (Agricultural Industry Electronics Foundation) set up a project group tasked with conducting activities to improve the interoperability of ISOBUS devices [3].

Uniform diagnostic access for the worst case

In the framework of standardization tasks, along with continual efforts to refine and extend test cases of the conformity test, Part 12 of the ISO11783 draft standard [4] was written to create a common diagnostic interface. It is based on SAE J1939-73 diagnostics [5]. The section of Part 12 of the ISO standard that has already been published, what is referred to as basic diagnostics, defines open diagnostic access. It provides basic functionalities and is intended to enable a system overview. This includes unique identification of the ECUs on the bus as well as information on the software version, manufacturer’s part number and the conformity test performed. Each ECU can report momentary errors, and when requested by the diagnostic tool it can also report previous errors. This information is intended to enable quick and reliable localization of the error causes. This is especially advantageous if a network consists of components from different manufacturers. For example, the tractor manufacturer’s service technician can use an ISO11783-12 compatible diagnostic tool to detect problems related to an implement from a different manufacturer. The technician might not be able to correct the problem, but can clearly identify its cause. If the cause lies in the implement, the tractor manufacturer’s service technician – who was summoned by mistake – can call up valuable information such as error codes or part numbers of the affected components to give the implement manufacturer’s service technician advance information on the problem. This keeps downtimes to a minimum and leads to a higher level of customer acceptance of ISOBUS-equipped machinery.

Ongoing efforts to extend Part 12 of the ISO11783 draft standard are taking the direction of a standardized description format for diagnostics. This would let each manufacturer describe diagnostic contents individually for each ECU. A prepared diagnostic application could use this description to diagnose the ECU regardless of which company manufactured it. The diagnostic description file might be downloaded from the ECU itself or over the Internet. Manufacturers with their own company-specific diagnostic tool would integrate ISO11783 diagnostics into their existing tool. Manufacturers without their own custom tools could use future standardized diagnostic tools. One practical benefit is that a service technician would have system-wide diagnostic capability with just one tool. This enables efficient and reliable localization of the real causes of errors and ideally to correct them right away.

Automated tests during the development phase

Introduction of uniform diagnostic access helps to quickly identify a problem on-site and possibly replace the defective part. If there is some incompatibility, however, the situation is generally very different. Replacing the electronics does not offer any help, since this does not correct the cause of the problem. In such a case,
corrected ECU software would be necessary. However, it would take time to produce and test this software. In addition, distribution of the modified software is often costly, since devices must be recalled from the field. Suitable preventive actions can be taken to avoid such compatibility problems. One option is the conformity test mentioned in the introduction. However, a disadvantage here is that the application itself is not part of the test. The focus in conformity testing is to test conformity to the standard. In addition, it is difficult or impossible to use the conformity test during development, since 100 percent compatibility cannot be assumed at the beginning of development. Often just point checks of a certain aspect are desired, e.g. a check of the Transport Protocol. Such tests conducted over the course of development are generally performed very frequently, they have many alternative test sequences, and they must be flexible in their configuration. Therefore, such tests should be designed for automation. If problems occur during the test, extensive analytical capabilities are needed as well.

One tool for all cases

CANoe.ISO11783 from Vector is a universal development and test solution that is used to verify conformity to the ISO11783 standard, providing the necessary domain knowledge [6]. The Virtual Terminal, for example, is a fixed component of CANoe (Figure 1). Diagnostic messages can be visualized using the Diagnostic Trouble Code Monitor and Scanner. The integrated Test Feature Set makes it possible to define frequently recurring tests and entire test sequences. The test sequences can be easily defined by XML, for example. Figure 2 shows a schematic representation of the Test Feature Set. In such an environment, CANoe.ISO11783 may assume the role of the test master and link to or drive other tools over various interfaces such as COM or .NET. It is also possible to integrate CANoe.ISO11783 in an existing test environment via the same interfaces. Because of its extensive simulation and analysis capabilities, its use is not limited to just testing or simulation of individual ECUs. The tool can simulate entire networks (simulation of the remaining bus). For example, operation of an implement could be simulated via a Task Controller or the Virtual Terminal.

With the help of Vector test hardware VT System, CANoe.ISO11783 also directly drives real consumers such as actuator motors and an ECU’s outputs, or reads in sensors (Figure 3).

CANoe.ISO11783 can be used to utilize, analyze and simulate the complex communication structures of the ISOBUS standard easily and efficiently. It is a comprehensive, universal tool for verifying conformity over all product phases: from development to operation and service of the working machinery.

Translation of a German publication in Elektronik automotive, October 2009

All Figures: Vector Informatik GmbH

Literature and Links:

[3] www.aef-online.org/

Figure 2: Phases of Test creation and interfaces with the CANoe. ISO11783 Test Feature Set: from creating the test sequence to evaluating the results.
Peter Fellmeth studied Computer Engineering at the University of Applied Sciences at Esslingen, Germany, specializing in Automation Technology. He is a team leader and product manager at Vector Informatik GmbH, where he is responsible for development of products and customer-specific projects related to ISOBUS, SAE J1939, Ethernet and DeviceNet.

Your Contact:

Germany and all countries, not named below

France, Belgium, Luxembourg

Sweden, Denmark, Norway, Finland, Iceland
VecScan AB, Göteborg, Sweden, www.vector-scandinavia.com

Great Britain
Vector GB Ltd., Birmingham, United Kingdom, www.vector-gb.co.uk

USA, Canada, Mexico
Vector CANtech, Inc., Detroit, USA, www.vector-cantech.com

Japan
Vector Japan Co., Ltd., Tokyo, Japan, www.vector-japan.co.jp

Korea

India
Vector Informatik India Prv. Ltd., Pune, India, www.vector.in

E-Mail Contact
info@vector.com

Figure 3:
Used in tandem, CANoe.ISO11783 and the Vector VT System form a “Midsize HIL”.