Electronic Tow Bar
Automating Agricultural Machines

Research Project EDAUG
Dipl.-Ing. B. Jahnke
Vector Congress, 26.11.2014
Contents

- Driver Assistance in Agricultural Machines
- Electronic Tow Bar Project - EDAUG
- Adressing Safety and Usability
- Prototype Development
- Summary
Automation Drivers
Driver Assistance in Agricultural Machines

Why automating agricultural machinery?

Target Functions
- Resource efficiency
- Crop maximization
- Crop quality optimization
- Time efficiency

Tasks
- Steering
- Velocity
- Implement controls (PTO, Hitch, Hydraulics)
- Drive train management
- Fleet management
- Documentation

Technical Support
- Driver Assistance
- Ergonomics
- Comfort Cab

Work Conditions
- Dreary tasks
- Long work time
- Uneven, rough terrain

www.fendt.com
Boundary Conditions for Automation
Driver Assistance in Agricultural Machines

- Process:
 - Complex growth and crop models → nutrition, density, treatments,…
 - Changing Conditions within short ranges and time period → Soil, Crop, Weather,…

- Technical:
 - GNSS availability
 - GSM/GPRS mobile web access

- Law and Standards:
 - No road traffic regulations
 - ISO 25119 (equivalent ISO 26262)

- Machine Design:
 - Power split transmissions
 - Power shift transmissions
 - Electro-hydraulic steering
 - Speed up to 60km/h
 - ISOBUS standard for automation applications
Contents

- Driver Assistance in Agricultural Machines
- Electronic Tow Bar Project - EDAUG
- Adressing Safety and Usability
- Prototype Development
- Summary
EDAUG Project
Electronic Tow Bar Project - EDAUG

agricultural machines, market insights and and safety competence

GNSS, navigation and geo-information systems

04/2011
07/2014

project management, control systems of mobile machines, environment perception

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz

Bundesanstalt für Landwirtschaft und Ernährung
The Concept
Electronic Tow Bar Project - EDAUG

Electronic Tow Bar system for agricultural machinery using sensor based obstacle detection and geo-information

- Connected:
 - On-site web access to a customized geo-information server

- Intelligent:
 - Dynamic path planning based on obstacle coordinates

- Safe:
 - Permanent parameter monitoring
 - Obstacle detection enabling autonomous safety stop
Contents

- Driver Assistance in Agricultural Machines
- Electronic Tow Bar Project - EDAUG
- Adressing Safety and Usability
- Prototype Development
- Summary
Safety Concept
Adressing Safety and Usability

Operational
- No safety critical faults or errors

Safety Stop
- Low GNSS signal quality
- Sensor based obstacle detection
- Manually uncoupled

Emergency Stop
- V/V collision risk
- Data Communication loss
- Severe system faults

Safety Targets:
- Human beings (ISO 25119)
- Environment
- Machines
State Machine
Adressing Safety and Usability

Operational Safety Stop Emergency Stop

Master
Assignment assigned

Safety Stop emergency

Docking alarm

Slave

Turn-Over

Evasion

Parallel Driving

Turn-Over

Tracking

Ignore

Emergency Stop

reset

[parallel = 1] [track = 1] [ignore = 1] [evade = 1]
Obstacle Detection
Adressing Safety and Usability

Sensor based obstacle detection

- Speed dependent Safety-Zone:
 - \(r_{min} = 5m \)
 - \(r = t_{brake} \cdot v \)
 - \(t_{brake} = 3s \)
 - \(v_{max} = \frac{20km}{h} \)
 - \(w = w_{implement} + 3m \)

- Long-Range-Surveillance:
 - Remote obstacle detection
 - Purpose: avoidance path calculation
Contents

- Driver Assistance in Agricultural Machines
- Electronic Tow Bar Project - EDAUG
- Adressing Safety and Usability
- Prototype Development
- Summary
System Architecture
Prototype Development

Institut für Fahrzeugsystemtechnik (FAST)
Lehrstuhl für Mobile Arbeitsmaschinen (Mobima)

System Architecture
Prototype Development

Institut für Fahrzeugsystemtechnik (FAST)
Lehrstuhl für Mobile Arbeitsmaschinen (Mobima)
Software Development and Testing

Prototype Development

- Model Based Code Development
 - Matlab/Simulink
 - dSPACE rapid prototyping platform

- Remaining Bus Simulation
 - Vector CANoe for state machine validation
 - including CAN and RS232 RF

- Bus Monitoring and Diagnosis
 - CAN and Ethernet
 - VN5610 and CANoe
Sensor Setup
Prototype Development

Driveaway and Close Range:

4 x Mesa SR4500 3D-cameras
- 2 x front mount/2 x side mount
- Difference image segmentation for $v = 0\ \text{km/h}$
- Iterative TLS Grid segmentation algorithm for $v > 0\ \text{km/h}$
- Range 0…5 m
Sensor Setup
Prototype Development

Long Distance Obstacle Detection

2 x Sick LMS511- LIDAR
- 1 x fixed horizontal mount, Range: max 80m
- 1 x active 3D-fixture, Range: 5…15m
 - speed dependent elevation control
 - lateral slope compensation → active 3D-fixture

Dipl.-Ing. Bernhard Jahnke
Vector Congress 2014 – Electronic Tow Bar
Obstacle Management and Operator Interaction
Prototype Development

Slave

Master

EDAS Speed

Safety Zone Dimension

UFS-Obstacle

Mapping Tracking

Shape Compression

Obstacle list

Path planning

Protocol Synchronization

Protocol

Obstacle Visualization

Driver Decision

Decision Evaluation

Path visualization

Field boundary

Obstacle ID

evade

ignore

edaugMAP

002

001

002

Institut für Fahrzeugsystemtechnik (FAST)
Lehrstuhl für Mobile Arbeitsmaschinen (Mobima)

Dipl.-Ing. Bernhard Jahnke
Vector Congress 2014 – Electronic Tow Bar
Geo-Information Server
Prototype Development

- **GI-Server for Electronic Tow Bar Systems:**
 - Concentration of GI from open source and commercial GI web-clients
 - Standardization of coordinate system
 - Relevant GI are:
 - Static obstacles like water, tree, power poles,…
 - Field boundaries for current platoon position

- **EDAUG-Client:**
 - Connectivity to EDAUG platoons
 - Request of local GI-set

- **Platoon:**
 - Download of obstacles and field boundaries
Contents

- Driver Assistance in Agricultural Machines
- Electronic Tow Bar Project - EDAUG
- Addressing Safety and Usability
- Prototype Development

- Summary
Summary

- EDAUG Tow Bar System features a complex Cyber Physical System using web-based data onsite in a real time environment.

- Environment perception and mapping supports driver to optimize usability.

- Collision avoidance has not been designed as safety function with regard to ISO 25119 → The responsibility remains with the operator.

- Management of information and operator interaction has been met as core problem to design a single operator multi vehicle platoon.
Thanks for your attention!

Dipl.-Ing. Bernhard Jahnke
Vector Congress 2014 – Electronic Tow Bar